
6.S188
Build a Digital Clock from the Eighties

Lecture 1B:
Designing Digitally

1/7/26 6.S188 Eighties Clock 1

Ok we actually want to design
stuff
• Claude Shannon showed how we could actually

design complicated digital circuits using math.

• We don’t use regular, normal human math*

• We have to use Boolean Algebra/representation
an algebra where things take on only one of two
values (0 or 1)

1/7/26 6.S188 Eighties Clock 2

*though what is “normal human math” really anyways, Joe?

Standardizing

• Prior to late 1950’s how exactly you’d do digital
design wasn’t super streamlined.
• A lot of the logic gates weren’t standardized..

1/8/26 6.S188 Eighties Clock 3

The Logic of Computer Arithmetic Ivan Flores 1963

Buying Logic
• Even prior to the late 1950’s

you couldn’t really just
happily design “logic” without
intimate knowledge of the
underlying circuits.
• Eventually startups started

releasing logic you could buy
and stick together.

1/8/26 6.S188 Eighties Clock 4

1/8/26 6.S188 Eighties Clock 5
$11.25 for one AND gate in 1960...about $130.00 in 2026 dollars

Transistors and Integrated Circuits

• Transistors on their own didn’t scale stuff down
too much.
• It was the ability to merge them into small

complicated circuits using lithographic
techniques that led to integrated circuits.

1/8/26 6.S188 Eighties Clock 6

Mid 1960s
• Texas Instruments got

integrated circuits fabrication to
a strong enough point that they
could release devices that had
multiple logic gates all in one
package!

1/8/26 6.S188 Eighties Clock 7

Jack Kilby
TI engineer...one of
inventors of
Integrated Circuits

7400-series

1/8/26 6.S188 Eighties Clock 8

Big Cost Savings (relatively)
• The 7400 cost $6.65 in

1966 FOR FOUR NAND
GATES...that’s about $66.50
in 2026 dollars...soooo
cheap (actually! This was a
big deal)

1/8/26 6.S188 Eighties Clock 9

In 2026, an AMD Ryzen 5 5600G has the

equivalent of about 2.5 billion NAND gates in

it...and I saw them for like 80 bucks in

December

So in 1966...you’d get 0.06 NAND gates per dollar
In 2026, you get 31.25 million NAND gates per dollar

So what did this
mean?

• Design was much more
accessible.
• Of course there was tons of

gatekeeping.
• Older engineers would make

younger engineers feel like
sh*t because they weren’t
having to design logic gates
from scratch and had to worry
less about voltage.
• Tale as old as time. Bunch of

boomers
1/8/26 6.S188 Eighties Clock 10

Anyways....Let’s design

• Let’s design circuits as you would have in the
mid 1960s and on...

1/8/26 6.S188 Eighties Clock 11

Boolean Starters
• Values are either 0 or 1.
• Can have variables like 𝑎 or 𝑏 (keeping in mind

they can only represent 0’s and 1’s)
• Three core operations...
• NOT (logical inversion):
• “NOT a” is !𝑎

• OR (sometimes called Boolean sum):
• “a OR b” is 𝑎 + 𝑏

• AND (sometimes called Boolean product):
• “a AND b” is 𝑎 % 𝑏 but can also implicitly: 𝑎𝑏 or 𝑎 𝑏

1/7/26 6.S188 Eighties Clock 12

Boolean Identities, Rules, Laws,
Etc...

1/7/26 6.S188 Eighties Clock 13

The Simplest Digital Function Class

• One Bit Input:

• How many possible 1-bit functions exist?

L01-14

1/7/26 6.S188 Eighties Clock

𝒇𝑥 𝑓 𝑥	

1-bit functions (input is a single value):

1/7/26

• How many possible 1-bit functions exist?
• Two (actually 4)…

𝑥 𝑓 𝑥
0 0
1 1

𝑥 𝑓 𝑥
0 1
1 0

Buffer (Yes) gate: Inverter (Not) gate:

𝑥 𝑓 𝑥	 𝑥 𝑓 𝑥	

𝑥 𝑓 𝑥
0 1
1 1

Always On gate:
𝑥 𝑓 𝑥
0 0
1 0

Always Off gate:

6.S188 Eighties Clock

L01-15

What About Two bits input?

• Two Bit Input:

• How many possible 2-bit functions exist?

L01-16

1/7/26 6.S188 Eighties Clock

𝒇
𝑥

𝑓 𝑥, 𝑦
𝑦

2-bit functions:

1/7/26

Mayo, Avi & Setty, Yaki & Shavit, Seagull & Zaslaver, Alon & Alon, Uri. (2006).
 Plasticity of the cis-Regulatory Input Function of a Gene. PLoS biology. 4. e45. 10.1371/journal.pbio.0040045.

1

0 x
1

0y

1

0 x
1

0y

1

0 x
1

0y

1

0 x
1

0y

1

0 x
1

0y

1

0 x
1

0y

1

0 x
1

0y

1

0 x
1

0y

1

0 x
1

0y

1

0 x
1

0y

1

0 x
1

0y

1

0 x
1

0y

1

0 x
1

0y

1

0 x
1

0y

1

0 x
1

0y𝑓 𝑥, 𝑦

𝒙 𝒚 𝑓 𝑥, 𝑦
0 0 𝑓 0,0
0 1 𝑓 0,1
1 0 𝑓 1,0
1 1 𝑓 1,1

2! = 16 possible functions
exist

Stated another way: there are
16 unique 1-0 combinations
for:
𝑓 0,0 , 𝑓 0,1 , 𝑓 1,0 , and
𝑓 1,1

6.S188 Eighties Clock

L01-17

Simple Truth Tables
• For a single-input system,

there are four possible
mappings (two non-
negligible)
• For a two input system,

you have 4 input
combinations and 16
possible truth tables
• There is a lot of

complexity that these
give us

L01-18

1/7/26 6.S188 Eighties Clock

Abels and Khisamutdinov, 2015,
https://www.researchgate.net/publication/291418819_Nucleic_Acid_Computin
g_and_its_Potential_to_Transform_Silicon-Based_Technology

https://www.researchgate.net/publication/291418819_Nucleic_Acid_Computing_and_its_Potential_to_Transform_Silicon-Based_Technology
https://www.researchgate.net/publication/291418819_Nucleic_Acid_Computing_and_its_Potential_to_Transform_Silicon-Based_Technology
https://www.researchgate.net/publication/291418819_Nucleic_Acid_Computing_and_its_Potential_to_Transform_Silicon-Based_Technology
https://www.researchgate.net/publication/291418819_Nucleic_Acid_Computing_and_its_Potential_to_Transform_Silicon-Based_Technology

Logical Reduction

• All high level operations we may want can be
reduced down to combinations of these simpler
logical operations
• We just need to start to see how.
• Don’t just think of the “AND” gate as ”AND” in the

quasi-grammar sense of the term. A lot of things
we’d want to do when writing high-level
logic/programs rely on it, even if we don’t name it
that explicitly.
• Same with “OR” or “XOR”

L01-19

1/7/26 6.S188 Eighties Clock

Consider just one of these truth
tables “XOR”
• If 0 and 1 are numbers, XOR performs base 2

addition:
• 0+0=0
• 0+1=1
• 1+0=1
• 1+1=0 (carry 1)

• Or, if 0 means positive and 1 means negative, XOR
performs sign determination of multiplication:
• 0×0 = 0 (positive×positive = positive)
• 0×1 = 1 (positive×negative = negative)
• 1×0 = 1 (negative×positive = negative)
• 1×1 = 0 (negative×negative = positive)

L01-20

1/7/26 6.S188 Eighties Clock

Or still thinking about ways of
using XOR
• XOR expresses the if/else check:

if(A==1):
 output = !B
else:
 output = B

• XOR it does the check: A!=B
• XOR does others
• All high-level algorithmic needs find

their basic implementation in these
fundamental functions

L01-21

1/7/26 6.S188 Eighties Clock

But this is backwards...

• We usually have a thing we want to build and we
need to figure out how to make it.

• We do not generally start with some random
logic circuit and assign meaning to it like a piece
of literature.

1/7/26 6.S188 Eighties Clock 22

Truth Tables and Sum of Product
Expressions
• The most purest, truest, guaranteed way to

represent digital functions is by either writing out
their Truth Table or their Sum of Products (SOP)

1/8/26 6.S188 Eighties Clock 23

Y 𝑌 = 𝐴 - 𝐵

SOP is a OR-ing (”sum”) of every
non-zero row (product) in the
truth table

Truth Tables and Sum of Product
Expressions
• The most purest, truest, guaranteed way to

represent digital functions is by either writing out
their Truth Table or their Sum of Products (SOP)

1/8/26 6.S188 Eighties Clock 24

Y
𝑌 = 𝐴 - /𝐵 + 𝐴̅ - 𝐵

SOP is a OR-ing (”sum”) of every
non-zero row (product) in the
truth table

As an engineer you’d generally
start with...
• Some sort of user-specified truth table.
• You could always use the resulting SOP as a

recipe of what to build...
• BUT the SOP is very often NOT in the most

simplified form.
• So your job would be to use the Boolean laws to

reduce your equations (and therefore designs)
down to the minimal number of gates to save
costs (financial, time, emotional, etc...)

1/7/26 6.S188 Eighties Clock 25

So here’s a truth table given to you
by your boss

1/8/26 6.S188 Eighties Clock 26

Y
Build this:

Start with SOP and let’s use Boolean Laws to
get to the purest circuit form!!!

More Complicated Circuit

1/8/26 6.S188 Eighties Clock 27

Build a circuit with three inputs
𝑎, 𝑏, 𝑐	and one output 𝑦.

𝑦	 should be high if 𝑎 is on or if
𝑏 is on with 𝑐 off or if 𝑐 is on or if
𝑏 is off with 𝑎 on.

Boolean Algebra is Tricky

• Karnaugh maps can help us out here!
• A higher-dimensional representation of truth

tables which can be used to graphically simplify
Boolean Expressions

1/8/26 6.S188 Eighties Clock 28

Karnaugh Map
• Instead of doing

truth table like
this:

1/8/26 6.S188 Eighties Clock 29

Y

• Do like this:

0 1
1 1

Single box is full-term product
 𝑎/𝑏

Larger continuous power-of-two
rectangles are simplified
terms... In this case this is 𝑏

For more inputs, can have larger K-
maps

• Input sequences are
broken up and listed
out in Grey-code
count
• Same idea. Circle

the largest
continuous power-
of-two-rectangles
until all 1’s are
covered on the
board...that’s your
final SOP

1/8/26 6.S188 Eighties Clock 30

OK...Complicating the More
Complicated Circuit

1/8/26 6.S188 Eighties Clock 31

Good job on designing the previous
circuit. You get a bonus of 1600
dollars.*

*enough to buy a brand new Volkswagen Beetle in 1966
**enough to buy a new base-model Ford Mustang in 1966.

Unfortunately we are not splurging
on three-input OR gates. All we
have are 7400 chips which we buy
in bulk. Build the circuit using just
those.
You do that, we’ll make your bonus
2400 dollars.**

Remember De Morgan!!

1/8/26 6.S188 Eighties Clock 32

=

=

Gee that seems silly

• Yeah, but early on,

• In very very mission-critical things it was hard to
rigorously quality-control lots of different
specialized chips.

• The most mission-critical thing of all in the 1960s
was the Apollo program

1/8/26 6.S188 Eighties Clock 33

AGC

• The Apollo Guidance Computer was comprised
only of three-input NOR gates

1/8/26 6.S188 Eighties Clock 34

https://klabs.org/history/ech/agc_schematics

The tri-NOR-gate “definition”:

AGC

1/8/26 6.S188 Eighties Clock 35

https://klabs.org/history/ech/agc_schematics

The tri-NOR-gate “definition”

Eve
ryt

hing else is

design O
NLY

 using

th
ose N

OR gates

Many p
ages of

schematic
s

Binary Numbers

• Each signal is 1 or 0...we can have multiple
signals in parallel to represent combined higher
level concepts.

• One of those can be numbers.

1/7/26 6.S188 Eighties Clock 36

Let’s do the following

• “a” is a two bit number and ”b” is a two bit
number

• I want a circuit like the following:

1/7/26 6.S188 Eighties Clock 37

𝒂 > 𝒃
𝑎[1: 0]

𝑐
𝑏[1: 0]

Binary to Seven-Segment

• Four bits of binary...
• To sixteen symbols...(hexadecimal)
• I need to build this...

1/7/26 6.S188 Eighties Clock 38

https://www.electrical4u.com/bcd-to-seven-segment-decoder/

https://blog.tindie.com/2022/03/chainable-seven-segment-display-module/

https://electronics.stackexchange.com/questions/351606/7-segment-binary-to-
hex

Step 1...

• Derive
Truth
Table

1/7/26 6.S188 Eighties Clock 39

https://www.electrical4u.com/bcd-to-seven-segment-decoder/
https://www.quora.com/Can-we-show-hexa-decimal-using-seven-segment-display

Let’s do one of those segments...
• Segment a

1/8/26 6.S188 Eighties Clock 40

The 7447

• Only does 0-9
• NOT 0-F

• Pack all this in a chip
and make money

• TI was selling these
nasty things for
about 12 bucks a
piece by late 1960s.

1/7/26 6.S188 Eighties Clock 41

Another Example (Multiplexer)

1/8/26 6.S188 Eighties Clock 42

𝒂

𝒃

𝒔

𝒄	 𝒄	
𝒂

𝒃

𝒔

