
Hitting Some Bits (Optional)
Lab 03A

6.S188 IAP 2026

This lab is somehow even more optional than the other labs. We’re including it just in case you want to be a cool person. Do
you want to be a cool person? It’s fine if not. . .

The Game
Those of you who are still with us and didn’t immediately bail out at the mention of the word “optional” are going to build a
hardware only version of the famous game “Kill the Bit” which we’ll call the more 2026-appropriate-title “hit the bit”. This
game was one of the little programs included with the documentation for the Altair 8800, one of the first commercial-successful
personal computers that helped kick off the home computer revolution in the 1970’s, which is pretty sweet.

Shift Registers
As was discussed in lecture 02b, you can hook up your D flops in a shift-register configuration. The term “register” is generally
used interchangeably with flip flop in most digital design btw. In a shift register situation, all the flops share a common clock,
and each flop feeds its output into the next like a Human Centipede type situation. The passing of “data” from the output of
one flop to the input of the other flop happens on each rising clock edge. This is the hardware-based implementation of the >>
(right-shift) operation in programming languages. In fact. . . when you do >> in a language, you are almost 100% using shift
registers behind the scenes.

Figure 1: Shift Registers. Data flows from DIN rightwards, moving through one flop on each rising clock edge.

In this case you introduce bits into the shift register on the left and they take four clock cycles to get to the end at which
point they fall off the edge like lemmings off a cliff.

A code equivalent of this behavior would be the following:

int x = 16;
while(1){

x = x>>1;
}

We can also feed the last bit back around again so the data stays in the system, so doing something like the following piece of
code:

int x = 8;
while(1){

x = (x>>1)|((x&0x1)<<3);
}

which can be achieved with just a tiny feedback path from the right-most flop’s output to the input of the left-most.

1

https://www.youtube.com/watch?v=ZKeiQ8e18QY
https://en.wikipedia.org/wiki/Altair_8800

Figure 2: Shift Registers with Feedback

OK, that’s fine, but like right now what we have will just start up in some random configuration of 1’s and 0’s, and then that
random sequence of bits will cycle through the flops. That’s nice, but we’re ultimately going to need to have a way to adjust
those values once the thing is running. Here’s one thing we can do, so that we can use, say a button, to affect the bits as they
flow through. Here we’re XOR’ing Q3 to produce our left-most bit:

Figure 3: Shift Registers with an XOR to introduce new bits

. . . which is like doing this in code:

int x = 8;
while(1){

x = (x>>1)|(d_in^(x&0x1)<<3);
}

So nice. Shift registers are super useful and form the basis of many useful things like cyclic redundancy checks, cryptographic
things, many data structures, etc. . .

But can you use them to make something fun? Perhaps a game at the same level of Silksong, The Elder Scrolls, Super Mario
Galaxy, Burger Time, or Big Rigs: Over the Road Racing? No we can’t. But we can make a game: the Hit the Bit game we
talked about earlier.

The idea here is going to be to put one of these little XOR button combos on each of the data inputs, so that pushing the
button when a bit is on flips it to off, and vice versa. So then ultimately, the goal of the game will be to have things start
with some number of the bits on, and then use the little buttons as your input to turn them all off (with the caveat that
accidentally clicking on one of the ones that’s currently off will turn it on again, which then makes your job even harder). But
we’ll talk more about that on the next page.

2

Making the Game
The schematic for the game is shown below (mostly):

Figure 4: Hit the Bit Schematic

We’ll use the same quad XOR as last week (74LS86). But to save on board space, we’ll use a different D-flip-flop chip than we
used last time. Today we’ll use the 74LS175, which has not two but four flip-flops per chip. Here’s the pinout:

Figure 5: 74LS175 Pinout

3

The core of our circuit is a four-bit looped shift register as discussed above. Then you have five buttons. One button (active
low) is a global reset/clear for all four flops. The other four buttons are game inputs that are set up as active high. These
four values are XOR-ed with the value being handed off. Remembering the Boolean expression for XOR is Y + AB + AB, we
can see that XOR is high when two signals are different. In the context of our cycling shift registers what happens then is at
every clock edge, the current bit being handed off is XOR’ed against a button value. If they are the same, a 0 is fed into the
next flip flop. . . if they are different, a 1 is fed into the next flip flop.

You can use this to make a game in conjunction with a clock signal that is outside the player’s control. If a set of 1’s and 0’s
currently exist on the four flops, such as 0110, without any user input (buttons all unpushed and therefore inputs 0) they
will evolve as follows: 0110 → 0011 → 1001 → 1100 → 0110 → If instead you press the button connected to the final
flop’s input, you’d have: 0110 → 0010 → 0000 because you XOR’ed a 1 with a 1 on both clock cycles. You have therefore
successfully “hit” the bit(s). If you kept holding that same input on though on the next clock cycle you’d re-introduce a new 1
into the system: 0000 → 0001. . . and so on.

For some definition of the word “fun,” this is a very “fun” game. Yeah, the seventies were a simpler time.

Make a Clock
OK, so one thing we left off of the last schematic is that the game requires we have a periodic clock signal to drive our system.
You could make this with a sixth button that you the user pushes, but that would take away some of the challenge of having
to time your button presses with a event controlled by a third party. So let’s make a circuit that repeats itself every so often
automatically. We’ll do that using a very very simple clock circuit using a fedback RC-charging circuit. We talked a bit about
this in lecture on Tuesday:

Figure 6: Clock Circuit (simple and crappy)

The frequency is approximately related to ≈ 0.2
RC . That means you can pick your frequency using whatever R and C you can

find. Changing these values changes how quickly the little bits march along their line, which is kind of like a way to change
the difficulty of the game. So just go ahead and pick/calculate/try some and try it out; once you have that, feel free to adjust
the speed by changing R and C until everything is moving at a comfy pace. Maybe try for a couple Hz maximum since it gets
kinda hard after that (pro gamers only).

While people who play Call of Duty or Battlefield games are always bragging about 60 or 120 frames per second (FPS), Hit
the Bit implemented in 74-series logic could, in principle, have FPS up towards the millions. While that would make the game
impossibly hard (not only can we not push buttons that fast, the LEDs wouldn’t even light up) and so we shouldn’t do it, it’s
still kind of cool to think about I guess.

Play the Game
You should be all set. You an play the game by:

1. Resetting the system by pushing the reset button and then releasing.
2. At some point, pressing a few buttons to “set” the “puzzle”
3. Have your friend (or you) then try to press the right set of buttons at the right times to clear all the bits. If they fail to

do that, they clearly aren’t worthy of your friendship.

Release Version 2.0
If you find four bits isn’t challenging enough, this game can be extended arbitrarily upwards in size. The fun of the game
scales like Θ (log (n)) where n is the number of flip flops. So hey. . . if you feel like it. . . go ahead and add some more bits to
the chain.

4

	The Game
	Shift Registers
	Making the Game
	Make a Clock
	Play the Game
	Release Version 2.0

